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Absrrucr: Continuous dynamical systems intuitively seem capable of more complex behavior 

than discrete systems. If analyzed in the framework of the traditional theory of computation, a 

continuous dynamical system with countablely many quasistable states has at least the compu- 

tational power of a universal Turing machine. Such an analysis assumes, however, the classi- 

cal notion of measurement. If measurement is viewed nonclassically, a continuous dynamical 

system cannot, even in principle, exhibit behavior that cannot be simulated by a universal Tur- 

ing machine. 
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Introduction. 

The recent resurgence of interest in the computational properties of both artificial and bio- 

logical neural networks has been accompanied by a renewal of interest in the scope of the 

notion of computation as discrete manipulation that has its formal realization in the Turing 

machine, and in the question of whether this notion encompasses all of the functions that are 

computable by neural networks. A number of authors, in the course of emphasizing the quali- 

tative and architectural differences between computations as carried out by artificial neural net- 

works and as carried out by Turing or von Neumann machines have hinted, at any rate, that 

machines of the two types might compute different classes of functions (e.g. Kohonen, 1988, 

Ch. 9; Smolensky, 1988; Freeman, 1988). It is unclear whether these authors intend to ques- 

tion the Church-Turing thesis, or merely to make a point about the appropriateness of different 

architectures for different classes of functions. The stronger reading is certainly the more 

interesting, as the Church-Turing thesis is the current operational definition of the intuitive 

notion of computability. Were neural networks shown to be capable of computing functions 

that could not be computed by Turing or von Neumann machines, it is standardly assumed, a 

change would be required not only in the formalism of computability theory, but in the under- 

lying intuitions as well. 

Artificial neural networks are typically represented formally as dynamical systems that are 

discrete in space, but continuous in time (reviewed by Grossberg (1988); see also, e.g. Cohen 

(1984) for a discussion of “networks” that are continuous in space as well). The temporal 

continuity of computations by such networks is typically the focus of discussions of possible 

differences between their computational powers and those of traditional computers: continuous 

systems intuitively appear to posses more behavioral degrees of freedom, and hence possibly 

greater computational power, than do discrete systems. Smolensky (1988), for example, sug- 

gests that “if there is any new theory of computation implicit in the subsymbolic approach [to 

cognitive science], it is likely to be a result of a fundamentally different, continuous formula- 

tion of computation” @. 18). Implicit in this suggestion is the idea that continuous dynamical 

systems may be capable of computations that are not representable as sequences of discrete 

manipulations, and hence not describable algorithmically. 
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The purpose of this note is to consider the description of continuous dynamical systems in 

light of the theory of measurement. While dynamical system models are often analyzed simply 

as formal devices, the more relevant issue in computer science or artificial intelligence is 

whether the observed behavior of a finite, physically-realized dynamical system can be 

described algorithmically. In practice, the process of measuring the states of any physically- 

realized dynamical system will, as pointed out by Ashby (1956), impose a discrete description 

on its behavior, for only finitely many states of the system can actually be observed. If the 

measurement process is regarded as classical, however, continuously many distinct discrete 

descriptions, each of which may approach countable complexity, are possible in principle. 

Because of this explosion of distinct possible descriptions, even relatively simple dynamical 

systems appear to have at least the computational power of a universal Turing machine. This 

observation appears to be the main motivation behind current questions regarding the Church- 

Turing thesis. If the measurements in question are regarded as nonclassical, however, this 

situation does not arise. A nonclassical view of measurement allows the coherent, algorithmic 

description of continuous dynamical systems both in the case in which the resolution of the 

measurements is sufficiently low that the behavior of the system can be described classically, 

and in the case of nonclassical system behavior. 

Measurement in classical state spaces. 

The scute space associated with a Turing machine is the set of all possible configurations 

of both the head and the tape'; in the case of a binary Turing machine with an infinite tape, the 

state space is isomorphic to the Cartesian product of the set of all binary vectors of length L 

with the positive integers. The execution tface of the machine for a given input is a path in the 

state space, i.e. a finite sequence of head positions and tape configurations. The initial state of 

such a path is the input, which in the case of a universal Turing machine may specify both pro- 

gram and data, and the final state is the output. 

In the case of an arbitrary virtual machine M, the state space is the set of all states acces- 

sible to the machine. The identities of these states are stipulated, at least implicitly, by the for- 

mal definition of M. An execution trace of M for a given input is a path in this space. Con- 

sider any such trace I ,  with an initial state ti and a final state + that is one of the possible final 
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states of the machine. A procedure that generates this trace from ti can be specified trivially: 

if state = t f ,  halt. 

if state = t i ,  j f f , state t 

Provided the execution traces are known, it is, therefore, trivial to simulate any virtual machine 

M with a universal Turing machine. 

If a virtual machine M is to be realized in a physical system S, it must be possible to con- 

struct an isomorphism from the state space of M to a set of states of S that interprets all execu- 

tion traces of M as sequences of states of S that are dynamically allowed, and that end in 

quasistable states, i.e. sequences s i ,  ..., sf of states of S such that, if S is placed in s i ,  it will 

traverse the states in the sequence until it reaches sf, in which it will remain until further per- 

turbed. The image of such an isomorphism in S is a representation of the computation carried 

out by M, i.e. an interpretation of S as realizing M. The construction of such an isomorphism 

requires, clearly, that suitable states of S have been identified. The identification of states of S 
that can serve as targets of a virtual machine interpretation is stipulative, but is not arbitrary: 

the states so identified must be measurable - reproducibly distinguishable from other states of S 

by observation. 

A state s of a physical system S is measurable if there is another physical system S‘ with 

a state s’ such that, if S and S’ are allowed to interact, S’ will be in state s’  only if S is in state 

s.  This definition is implicit in both classical physics and cybernetics. It is clearly regressive; 

the regression is halted, in practice, by reliance on unanalyzed instances of measurement by 

human observers. Thus the formal notions of computation and of measurement both depend, 

for their foundations, on the intuitive sense of a human observer that a physical system has 

reproducibly changed its state. 

A system S is classical if its states can be measured without being perturbed by its 

interaction with the measuring system. If a system is classical, in other words, the process of 

measuring a given state has no effect on subsequent state transitions. Computers are designed, 

as are most artifacts, to behave as classical devices; it is possible, for example, to observe 
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representations of values of variables printed on a terminal during execution of a program 

without altering the flow of control of the program. Classical measurability is, moreover, 

assumed implicitly in the definition of a Turing machine, in that it is assumed that the states 

traversed by the machine in the course of a computation can be followed by an observer 

without the observations perturbing the machine in any way. The theory of computation thus 

assumes, not merely some notion of measurement, but the classical notion of measurement. 

This assumption of classical measurability renders the algorithmic description of continuous 

dynamical systems both seemingly straightforward and deeply paradoxical. 

If a system is both classical and continuous, the precision with which its behavior over 

time can be described, i.e. the number of measurable states that the system can be interpreted 

as traversing in the course of exhibiting a particular behavior, is limited only by the resolution 

of the measuring system that is used to identify its states. The interpretation of a continuous, 

classical dynarnical system S as a virtual machine M is, therefore, quite straightforward. For 

each execution trace c of M, one selects a sequence s i ,  ...,sf of states of S that can be mapped 

one-to-one onto t .  The only requirements of this interpretation process are that the terminal 

states sf be quasistable, and that S have a sufficient number of distinct states. Provided that 

measurements can be made at sufficient resolution, however, a sufficient number of states can 

be identified in a classical system that is changing at least one of its state variables - e.g. the 

position of one of its components - continuously to allow any interpretation whatever. The 

behavior of a continuous, classical dynamical system between two states si and sf can thus be 

interpreted as a trace of any computation by any virtual machine whatever. 

Consider a continuous, classical dynamical system S with countably many quasistable 

states, each of with may be reached by a distinct path s i ,  ...,sf. Each of these paths may 

independently be interpreted as a trace of a computation by some virtual machine. In particu- 

lar, a path in S can be found to interpret every possible path in any finite virtual machine M. 

Such a system S can, therefore, be interpreted as executing any algorithm whatever on any 

input whatever, merely by measuring a sufficient number of paths at sufficient resolution. A 

continuous dynamical system with countably many quasistable states has, therefore, at least the 

computational power of a univeral Turing machine. Moreover, the number of sets of measure- 

ments, and hence the number of discrete sets of states of a continuous system, that can be 
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given any particular virtual-machine interpretation is continuous. 

The above result, which is an analog of Ashby’s (1956, p. 39) point that any physical 

object can be given countably many interpretations as a “system,” renders the question “what 

algorithm does S execute?” answerable only by stipulation. By explicitly interposing an 

interpretation step between the system’s dynamics and its purely stipulative, explosively 

numerous algorithmic descriptions, it also permits the question of whether the dynamics under- 

lying the interpretations can, in some sense independently of any interpretation, be regarded as 

having computational power. The intuition that continuous systems are more behaviorally 

complex than discrete systems suggests that the underlying dynamics have computational 

power that cannot be described algorithmically, and the current wave of questions about the 

algorithmic description of dynamical systems appears to be motivated by the consideration of 

particular cases of systems that exhibit very complex dynamic behavior. Smolensky (1988)’ 

for example, portrays algorithmically describable “symbolic” cognition as an emergent pro- 

perty of a complex underlying “subsymbolic” dynamical system in which temporal continuity 

plays a key role. The significance assigned to continuity suggests that the underlying system is 

viewed as not describable algorithmically. Similarly, Freeman (1 988) explicitly contrasts algo- 

rithmic systems and chaotic dynamical systems, with the implication that the latter are not 

describable algorithmically. 

The paradox imposed on computational description by the classical notion of measure- 

ment is that the “underlying dynamics” of a continuous system appear both accessible and 

forever inaccessible to the analyst. The behavior of a classical continuous system can be simu- 

lated exactly - even if its dynamics are everywhere nondifferentiable - at any level of resolu- 

tion at which its states can be measured. Classical measurement can, however, be made arbi- 

trarily precise; hence any behavior, no matter how complex, can be measured, and then simu- 

lated with a Turing machine. On the other hand, because the system is continuous, any partic- 

ular discrete simulation potentially misses behavior of arbitrary complexity altogether. This 

paradox is particularly striking in the case of everywhere nondifferentiable systems, in which 

the analyst is driven to infinitely greater levels of resolution in an attempt to “capture” the 

behavior in an algorithmic description, but is forever frustrated. Ashby (1956), perhaps sens- 

ing this paradox, simply refused to consider such systems as “machine-like” and worthy of 
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analysis (p. 41). 

Nonclassical measurement. 

In practice, measuring systems have finite resolution, and systems being measured exhibit 

thermal and other forms of noise that further limit the precision with which states can be 

identified. Hence the dynamics of a continuous system can, in practice, only be sampled over 

a finite interval, and usually in a way that averages many states that would be distinct if 

viewed at higher resolution. These features of measurement in practice became features of 

measurement in principle in the course of the transition from classical to nonclassical physics, 

during which it was recognized that the classical notion of measurement, while useful as an 

approximation, is deeply incoherent. A system is nonclassical if the interactions with an exter- 

nal system required to measure its states perturb its dynamics, i.e. if some version of 
2 Heisenberg’s principle holds . 

Physical systems become nonclassical at the level of measurement resolution at which the 

interaction energy between the system and the measuring system becomes comparable with the 

separation in energy between the states being measured (a standard treatment of nonclassical 

measurement is Jauch, 1968, Ch. 11; more recent reviews may be found in Greenberger, 1986). 

As the energy transferred in a measurement process determines the information that may be 

transferred, more informative - Le. more precise - measurements cause greater perturbations of 

the measured system. Note that “measurement” here does not imply an epistemic act by an 

intelligent agent, but merely an interaction with an external system that transfers energy - i.e. 

information - to the system being measured: any such interaction counts as a measurement. At 

measurement resolutions that are sufficiently low that the measurement process does not per- 

turb the system, the behavior of the system can, as an approximation, be regarded as classical. 

While the theory of nonclassical measurement has been formulated mathematically as part of 

physics, it is generally accepted that biological and psychological systems, for example, are 

nonclassical with respect to many kinds of measurements. Indeed most measurements made on 

living systems perturb them in some way, and such perturbations cannot be predicted exactly 

in the absense of nonperturbing measurements. The nonclassical nature of such systems is 

rooted in the nonclassical nature of their physical components; hence increasing the 
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measurement resolution magnifies instead of mitigating their nonclassical behavior. 

The identification of a state requires measurement; therefore, identifying states of a nonc- 

lassical system may perturb the system, and hence may cause a state transition to occur that 

would not have occurred had the state not been identified. In a nonclassical “Turing 

machine,” for example, observation of the position of the head, or of the state of the tape, may 

influence the head’s next move, or the next state of the tape. Neither the direction nor the 

magnitude of such perturbations can be predicted exactly, and the measurement of such a per- 

turbation will only further perturb the system. As the resolution with which states are meas- 

ured increases past the upper limit for classical behavior, each measurement introduces further 

uncertainty regarding the state transitions that the system will execute - i.e. the path that it will 

follow - from any given initial state. Higher resolution measurements require greater energy 

transfer, which causes greater perturbation of the dynamics, and hence reduces the predictabil- 

ity of future behavior. In the limit of an infintely precise measurement of the state, all infor- 

mation about the next state transition is lost: all transitions become equally probable. The 

behavior of a system in the nonclassical domain can, therefore, only be specified stochastically, 

i.e. by specifying a probability distribution over the possible transitions from each state. That 

such stochastic specifications are complere descriptions, in principle, of the system’s observ- 

able dynamics is a foundational, and experimentally well confirmed, claim of quantum 

mechanics (see e.g. Greenberger, 1986, esp. Parts 111, IV, IX). 

The treatment of measurements of the behavior of continuous dynamical systems as nonc- 

lassical has two effects. First, it places an upper limit on the resolution with which states can 

be measured, and hence the precision with which they can be specified, if classical behavior is 

to be maintained. By preventing the measurement resolution from approaching infinity in prin- 

ciple, such an upper limit prevents the number of states that can be identified as belonging to a 

given path from approaching infinity in principle. The explosion of interpretations that results 

from the assumption of classical measurement is thus prevented: because only a finite number 

of states can be identified on any path, there will always be some virtual machine that a given 

system does not have sufficient measurable states to realize. No physical system that behaves 

classically can, therefore, realize every virtual machine, even in principle. A continuous physi- 

cal system that is measured in such a way that its behavior remains classical has, in other 

j i  
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words, fewer measurable states, and hence lesser computational power, than a discrete univer- 

sal Turing machine. A universal Turing machine can, therefore, simulate the behavior of any 

continuous physical system, at any level of resolution at which the behavior of the latter can be 

regarded as classical. This is a consequence not of a fact about continuous dynamics per se, 

but of the requirements of nonclassical measurement. 

The second consequence of the nonclassical treatment of measurement is that the behavior 

of a continuous dynamical system can be completely described algorithmically, even in the 

range of resolution in which the behavior is nonclassical. This follows from the completeness 

of the description of the system’s dynamics by the state transition probability distributions. A 

“transition virtual machine’’ specified entirely in terms of such probabilities was described by 

Fields and Dietrich (1987) as a model of cross-domain problem solving behavior, such a vir- 

tual machine can be viewed intuitively as a stochastic ensemble of Turing machines, and can 

be simulated on a von Neumann machine by simply calculating the probability distributions. 

The nonclassical view of continuous dynamical systems addresses the paradox posed by 

their classical description by affirming that only observed behavior can be described, and that 

only stochastic behavior can be observed. The description of a continuous dynamical system 

as a transition virtual machine is, therefore, a complete description of its observable dynamics 

at the level of resolution of the observations. As the level of resolution increases, the informa- 

tion about the dynamics contained in the description decreases; in the limit of infinite resolu- 

tion, the system’s behavior appears random, and thus contains no information. As measure- 

ment resolution decreases to below the classical limit, the behavior of the system appears pro- 

gressively more determined. However, the number of identified states available for computa- 

tional interpretation concommitantly decreases; the computational power of the system thus 

decreases with the resolution of the measurements. The “underlying dynamics” of the system 

cease to hover always on the edge of observability: there are no underlying dynamics, only 

observable - and hence algorithmically describable - dynamics. 
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Conclusions. 

How one approaches the question of what is computable by a physical system depends on 

how one approaches the process of measurement. The standard Turing machine model of com- 

putation implicitly assumes that measurement is a classical process, i.e. that the states of a sys- 

tem can be measured arbitrarily precisely without perturbing the system. When applied to con- 

tinuous dynamical systems, however, this view of measurement leads, by allowing the resolu- 

tion with which states are identified to approach infinity, to the paradox that even relatively 

simple systems may be interpreted as  computing any function, i.e. as having at least the com- 

putational power of a universal Turing machine. 

Classical measurement is, however, an approximation that is valid only at low resolution. 

If measurement is viewed nonclassically, classical behavior can be maintained only if measure- 

ments of the system’s behavior are made at low resolution. Explosive growth in the number of 

states that a system can be interpreted as traversing is thus prevented. No physical system can, 

therefore, be interpreted as computing every function. 

The nonclassical behavior of a dynamical system can be described by a function that 

specifies the transition probabilities between every pair of states. Such a function can be calcu- 

lated straightforwardly by a von Neumann machine; hence continuous dynamical systems do 

not have greater computational power than a universal Turing machine even in the nonclassical 

domain. 

These results illustrate the general importance of physical considerations in the algo- 

rithmic description of physical systems. While such considerations are clearly relevant to 

engineering and implementation issues, they are also relevant to the theory of computation as a 

behavior of physical systems, and to the computational interpretation of such systems. Physi- 

cal considerations are universal: it is significant that nowhere in the above discussion was any 

assumption made that the behaviors in question intuitively qualify as “computations.” The 

neglect of universal physical principles, such as the nonclassical nature of measurement, can 

lead to the generation of artifactual paradoxes such as that of “underlying dynamics,” and can 

obscure important features of computation as a physical process. 
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Notes. 

1. “State space” is the standard term for the space of all possible machine configurations in 

AI (e.g. Barr and Feigenbaum, 1981, Ch. IIB). This usage of “state space’’ denotes the 

configuration space or ID space of a machine, as these terms are standardly used in com- 

puter science (e.g. Hopcroft and Ullman, 1979, Ch. 7), not the space of states of the con- 

trol. 

Many, from Einstein onward, have argued that the physical world may, after physics has 

progressed beyond its current stage, turn out to be classical afterall. This argument is typ- 

ically based on aesthetic considerations, and all testable predictions of alternative, classi- 

cal theories in physics have thus far proven false (see the references to Greenberger noted 

in the text). Our best description of the physical world has become progressively less 

classical since the development of field theory in the 19th century, and there is no reason, 

other than wishful thinking, to believe that this trend will not continue as experimental 

techniques improve. 

2. 
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